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TECHNICAL NOTE 4240
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SUBSONIC SPEEDS ON A RECTANGULAR WING OF ASPECT
RATIO 2 OSCILLATING ABOUT THE MIDCHORDT

By Edward Widmayer, Jr., Sherman A. Clevenson,
and Sumner A. Leadbetter

SUMMARY

Some measurements were made of the aerodynamic forces and moments
acting on a rectangular wing of aspect ratio 2 which was oscillated about
the midchord. These measurements were made at four frequencies (31, 43,
54, and 62 cps) over a range of Mach number from 0.15 to 0.81, a range of
reduced frequency from 0.15 to 1.32, and a range of Reynolds number from

0.60 x 106 to 9.21 X 106. It was feasible to compare results of a por-
tion of these measurements with some published experimental data and, in
general, reasonable agreement was found to exist. An appendix is included
to show the correction of the root reaction for inertia and aerodynamic
effects in order to determine the total serodynamic load.

Comparison of the measured aerodynamic forces and moments with those
predicted by the method of Reissner and by the method of Lawrence and
Gerber for wings of aspect ratio 2 in incompressible flow showed generally
good agreement. Comparison of the measured quantities with those predicted
by two-dimensional-flow theory indicated that the effects of finiteness of
span on the aerodynamic forces and moments are considerable. Some experi-
mental results pertaining to the influence of wind-tunnel-wall effects on
nonsteady aerodynamic measurement have been included.

INTRODUCTION

A need exists for experimental measurements of oscillating air forces
because of the significance of these forces in flutter and related fields,
and in order to assess past and present theoretical work. Despite the
importance of the problem, only a limited amount of data, both experimental

lSupersedes recently declassified Research Memorandum L53F19 by Edward
Widmayer, Jr., Sherman A. Clevenson, and Sumner A. Leadbetter, 1953.
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and theoretical, exists for restricted ranges of aspect ratio, Mach
number, and Reynolds number. (See, for instance, ref. 1.)

Theoretical treatment of aspect-ratio effects on the oscillatory
aerodynamic coefficients for subsonic speeds is in a state of develop-
ment and is not yet in a form convenient for numerical comparison.

There is difficulty in mathematically representing the physical phenomena
and certain assumptions necessary to obtain a solution are doubtful, par-
ticularly those associated with tip effects. Consequently, current
experimental measurements will be compared with readily available experi-
mental and theoretical oscillatory coefficients.

This paper presents some experimental messurements of the oscilla-
tory aerodynamic forces and moments acting on a rectangular wing of
aspect ratio 2 which was oscillated about the midchord. These coeffi-
cients are presented for a range of reduced frequency from 0.15 to 1.32
and for a range of Mach numbers from 0.15 to 0.81. The Reynolds number

ranged from 0.60 X 106 to 9.21 X 106. These measurements were made by
using a resonant oscillation technique in the lLangley 2- by 4-foot
flutter research tunnel with air or Freon-l2 as a testing medium. A
comparison of the measured values has been made with some existing
experimental data and with the results of the analyses of references 2
and 3, that is, of Reissner and of Lawrence and Gerber. In order to
establish some convenient reference values, coefficients for two-
dimensional incompressible flow (ref. 4) are indicated. The results

are presented in tabular form for quantitative evaluation and in graphi -
cal form for qualitative examination and comparison.

SYMBOLS
A aspect ratio
a speed of sound, fps
c chord of wing, ft
EI bending stiffness where E 1is Young's modulus and I 1is
section moment of inertia
g logarithmic damping coefficient of wing in a near vacuum
gy Or A logarithmic damping coefficient of wing in airstream

H tunnel height, ft
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Iy effective inertia of oscillating system accounting for
dynamic deformation of system, ft—lb-secg/radian

Kg effective spring constant of oscillating system, ft-lb/radian

k reduced-frequency parameter, wc/2v

kg spring constant of a simple mass-spring system, ft-lb/radian

L oscillating 1ift vector acting on wing for oscillations about
midchord axis, positive when acting downward,

1 (“mfé@ Lot
. iw

|L|e = -(ﬂpvzsclal)(ll + 112)e

i nondimensional coefficient of 1lift in phase with angular
displacement

io nondimensional coefficient of 1ift in phase with angular
velocity

M Mach number

M, oscillating moment vector acting on wing for oscillation about
midchord, referred to the axis of rotation, positive for
leading edge up,

i(w %%%9 .

IMale = (ﬂ/2)pvesc2]a|(ml + img)el‘bt

m wing mass, slugs

my nondimensional moment coefficient in phase with angular
displacement

Mo nondimensional moment coefficient in phase with angular
velocity

R Reynolds number

s semispan of wing, ft

t time, sec

v velocity of test medium, fps

b'd spanwise coordinate

y deflection coordinate
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o angle of incidence at s/2 span station as a function of

time, |a|elam, radians
0 phase angle between moment vector and incidence vector,
-1
tan ~(mp/my), deg

¢} mass density of test medium, slugs/cu ft

¢ phase angle between 1lift vector and incidenee vector,
tanl(15/11), deg

) circular frequency of oscillation of wing, radians/sec

Wy, circular frequency of first natural wing bending, radians/sec

Wyge circular frequency of oscillation of wing in a near vacuum,
radians/sec

A dot over a symbol indicates a derivative with respect to time.

APPARATUS AND METHOD

Tunnel

The Langley 2- by L-foot flutter research tunnel was used for the
tests reported herein with the test section modified to be rectangular
in shape, measuring 45.75 by 24 inches. The test mediums were air and
mixtures of air and Freon-12 as noted for each set of data. The use of
the air and Freon-12 mixture as a test medium permits the attainment of
approximately twice the reduced frequency obtained in air for a given
Mach number and frequency. The choking Mach number for these tests was
approximately 0.92. The wing was mounted in the test section as shown
in figure 1 and with its wall reflection had an aspect ratio of 2.

Wing Model

The semispan wing model had a rectangular plan form with a 12-inch
chord and a 12-inch semispan corresponding to an aspect ratio of 2.
Fabricated construction was employed; a steel box spar carried four
evenly spaced ribs to which plywood skin was attached forming an NACA
654010 airfoil section. The wing was designed to have high natural
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frequencies in order to reduce the amount of correction to the measured
forces due to elastic deformations and to bending inertia loads. The
first natural cantilever bending frequency ranged from 125 to 130 cps.

The semispan wing model was mounted as a cantilever beam at the
tunnel wall in an oscillator mechanism. The mount permitted the wing
to oscillate in pitch about the midchord axis. The wing was mass bal-
anced about this axis of oscillation in such a way that there were no
1ift reactions when the wing was osclllated in a near vacuum.

Oscillating Mechanism

The oscillating mechanism may be considered as a simple torsional
vibratory system as illustrated in figure 1. The system consists of a
torsion spring which is fixed at one end, a hollow steel shaft which is
supported by bearings, and the semispan wing which has a base plate that
is flush with the tunnel wall. The mechanism was oscillated in torsion
at the natural frequency of the simple spring-inertia system by applying
a harmonically varying torque through the shaker coils attached to the
shaft. Different springs were used to permit a choice of frequency of
oscillation. The springs used and the resulting torsional natural fre-
gquencies in a vacuum were as follows:

Spring Ovacs
radians/sec
A 31 X 2=n
B 43
C 54
D 62

The bearings were contained in housings which were carried on
colums. These columns were designed to include stress-sensitive regions
and were equipped with strain gages from which the aserodynamic 1ift could
be determined. The vertical reactions at the fixed end of the torsion
spring were negligible because of the rigidity of the steel tube and the
small deformations experienced by the strain-gage columns.

The electromagnetic shakers consisted of stationary coils furnishing
a steady magnetic field and moving coils which were attached to the steel
shaft. The moving coils were driven by a variable-frequency oscillator.
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The moving coils were alined so that the direction of the applied force
was perpendicular to the direction of the lift. Provision was made for
interrupting the power to the moving coils in order to obtain a power-off
decaying oscillation.

Instrumentation

The instrumentation of the experiment was designed to provide signals
that were a measure of the 1lift and angular position at any instant and to
provide a means of measuring their amplitude and time relationship. The
1lift reactions were converted to electrical signals by means of wire strain
gages attached to the supporting columns. The gages were connected so that
only lifting loads were sensed. An electrical signal from a wire strain
gage mounted on the torsion spring so as to sense torsional strains was
calibrated to give the angular displacement in terms of the wing incidence.
The signals were filtered and measured with vacuum-tube voltmeters.

The angular-position signal was recorded on a recording oscillograph
during the decay of the oscillation for the purpose of obtaining the
damping factor. The phase measurements were made with an electronic
counter chronograph. The time lapse between a given point on a 1lift signal
and a corresponding point on the position signal was measured while the
wing was oscillating at a constant frequency. The period of oscillation
was measured with this instrument by determining the time lapse between
corresponding points on the same signal.

Calibration

The angular position of the wing was dynamically calibrated with the
signal from the torsion strain gages by a photographic technique. Time
exposures were taken of a fine chordwise line on the tip of the wing for
various amplitudes while the signal output was recorded. The amplitude
of oscillation of the wing was obtained from the enveloped position of
the line on the wing tip and correlated with the strain-gage signal. By
using this procedure and a line on the leading edge, it was determined
that, at the maximum frequency of oscillation (62 cps), the tip angle of
incidence exceeded the root angle of incidence by less than 2 percent.

The signals from the balance columns were calibrated in terms of
pounds of force per unit of signal strength. Known loads were applied
to the wing, and the column reactions were determined by treating the
wing shaft system as a simple beam with overhang. (See, for instance,
fig. 1.) The reaction forces were then related to the respective signals.
The meters were calibrated dynamically by using a voltage divider referred
to the open-circuit calibration of the strain gages. The vacuum-tube-
voltmeter readings are believed to be within th percent of true signal.
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In order to minimize errors in phase angle ¢ introduced in the
electrical operations, a tare value of phase angle was obtained at each
reading by applying either the 1ift or incidence signals through both
channels of the electrical circuits. The phase-measuring system was
calibrated at various frequencies by using standard resistance-
capacitance phase-shift circuits and by using a cam-operated set of
cantilever beams on which strain gages had been mounted. The latter
system had distortion and noise and approximated the worst tunnel con-
dition. Calibrations of the phase meter indicated that the phase angle
may be determined within 3C of true value with a noisy signal and
within t0.5° of true value with a clean signal.

Data Reduction

The 1ift forces as received from the balances contain an aerodynamic
component and an inertia component which arises from the bending deforms-
tion of the wing. In order to correct the measured 1ift to the aerody-
namic 1ift, it was necessary to correct for the inertia forces due to
wing deformation. A discussion of this correction is given in appendix A.
The inclusion of this correction leads to a factor which, when multiplied
by the measured lift, gives the actual applied lift. Values of the factor
are 0.98 for spring A, 0.95 for spring B, 0.91 for spring C, and 0.87 for
spring D. In order to estimate the possible error incurred by neglecting
the aerodynamic forces and moments arising from the bending deformation,
these forces were included in the analysis in appendix A and were found
to be less than 1 percent of the correction due to wing deformation caused
by the inertia forces. The phase angle ¢ contained a component due to
these forces that tended to increase ¢ by less than 1°. The moments due
to the bending deflection were found to be negligible relative to the
magnitude of the measured moment. As the aerodynamic effects due to wing
bending were within the accuracy of the measurement, no effort was made to
adjust for these quantities.

The in-phase moment was determined from the change in resonant fre-
quency due to air flowing over the wing as indicated in reference 5.
Since the torsional damping was relatively small, its effect on the fre-
quency is neglected and the entire shift is attributed to the in-phase
moment. The coefficient of the in-phase moment is given by

2
Ks ! 1
m = -
% ov2c?s |\GPvac

The dependency of m; on the small difference of two quantities of the

same magnitude leads to considerable loss in accuracy and consequent
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b4
scatter in the data. This scatter became so large for the torsional
springs C and D that those coefficients are not presented. ¥
The quadrature-moment coefficient was determined by operatigg on
the logarithmic decrement of the power-off decay of the oscillation.
The coefficient m, was given by
2 | 2
n Tgwy g Dyac «
—22——-———— _t— S
X ov2els wy
2
The derivation of this equation is treated in sppendix B.
The phase angle 6 between the moment vector and the angle of 1nci-
dence was obtained from the relationship 6 = tan'l(mQ/ml). The lack of
precision of determining m; and my directly affects the degree of
accuracy of 0; the values of © are not expected to be more accurate
than their components. .
RESULTS AND DISCUSSION v

The experimental results for the measured aerodynamic forces and
moments are presented in tables I to IV. These results cover four over-
lapping ranges of reduced frequency (one range in each table) because
the Mach number was varied over a range while the frequency varied only
a small amount (due to the change in aerodynamic moment). The measured
values of 1ift and moment coefficients and their respective phase angles
are shown in tables I and II, whereas the in-phase moments and moment phase
angles are omitted from tables IIT and IV.

The calculated values of the various theories are given in tables V
to VII for convenience of discussion and comparison with experimental
coefficients. Some calculated values are also shown in various figures
for ease in comparing trends. Experimental data relating to the influence
of wind-tunnel walls on the aerodynamic forces and moments are presented
in table VIIT.

Before presenting the actual coefficients of 1ift and moment and
their respective phase angles, the effect of Mach number and Reynolds
number on the coefficients will be briefly mentioned. A comparison of
some of the current data will then be made with some other experimentally
determined coefficients obtained from another source (ref. 6). Compari-
sons of the current data with the two aspect-ratio theories will then be »
made. TFor reference, coefficients for two-dimensional incompressible flow
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will also be shown. The section will be concluded with a brief discussion
of wind-tunnel-wall effects.

A study was made to determine the effects of Mach number and Reynolds
number on the aerodynamic coefficients. Since the testing technique used
did not readily permit either k, M, or R to be held constant while
the remaining two parameters are varied, a considerable amount of cross
plotting was necessary to obtain any indication of an effect due to Mach
number or Reynolds number. Insufficient data were avallable for this
purpose and much extrapolation and interpolation were necessary. In
light of the experimental inaccuracies (perhaps of the order of the par-
ticular effects sought) and the operations necessary to obtain the results,
no quantitative information could be obtained. This study indicated that
the aerodynamic coefficient possibly was influenced to some extent by both
Reynolds number and Mach number. However, for the ranges of speed and
frequency covered in this series of experiments, the overall effects of
the Reynolds number and Mach number appear not to be of first order and
to lie perhaps within the accuracy of the experiment.

In view of the paucity of experimentally determined oscillatory aero-
dynamic coefficients for finite wings, it is of interest to compare these
data with available data from other sources. Reference 6 has presented
experimental data for a rectangular wing having the same aspect ratio and
axis of rotation as the wing discussed herein, but for a lower range of
Mach number and Reynolds number. It should be remarked that there are
differences in techniques; the moment coefficients of reference 6 were
obtained for the case of steady oscillation, whereas the moment coeffi-
cients of the present paper were obtained from the method of decaying
oscillations. However, in reference 5 it was shown that for a two-
dimensional wing the damping moment obtained from steady oscillations
was in agreement with that obtained from decaying oscillations.

A comparison of the results presented herein with those published in
reference 6 is shown in figure 2. It may be seen that, for the magnitudes
of the 1ift and moment, there is good agreement. This agreement is grati-
fying and, since different methods of measurement were used, the magni-
tudes shown may be considered valid. Large discrepancies may be noted
between moment phase angles. The data of reference 6 fall close to a
phase angle of O° and show some values which indicate negative aerodynamic
damping. The reasons for the discrepancy in the moment-phase-angle
results between reference 6 and the present paper are not known. A com-
parison of current moment-phase angles with results of calculations is
presented subsequently.

Additional data on the experimental damping-moment coefficients have
been given in reference 7. These coefficients were obtained by the method
of decaying oscillations for a rectangular wing of aspect ratio 2 with
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pitch axis at the midchord. The results of reference 7 are compared with
the data of this paper in figure 3, the solid and dashed curves being
taken from reference 7 and the symbols representing results from this
paper. Despite the differences in Reynolds number, it may be noted that
the data from the present investigation are in basic agreement with other
published results.

The comparisons of the experimental coefficients and phase angles
with the theoretical oscillatory coefficients and phase angles for a
finite wing will be made only for the incompressible case in this paper.
The results of two theories, namely, those of Reissner (ref. 2) and
Lawrence and Gerber (ref. 3), were readily available, whereas coeffi-
cients for finite wings in compressible flow were not. In making these
comparisons, it is recognized that Reissner limits the applicability of
his theory to an aspect ratio of 3. No effort has been made in this
paper to evaluate the relative merits of the two theories. In order to
illustrate the influence of finiteness of span, further comparisons of
the experimental data have been made with the coefficients for a two-
dimensional incompressible fluid (ref. 4). These comparisons may be made
by referring to figures 4 to 8.

In figure 4 may be seen the coefficlent of the magnitude of the 1lift
vector as a function of 1/k. In this presentation it should be recalled
that the data for different torsional springs at a given value of l/k
were obtained at different Mach numbers. It may be seen that, for the
low values of l/k, experimental data fall between the theory of Lawrence
and Gerber and the theory of Reissner, whereas for the higher values of
l/k, the theory of Reissner appears to be in agreement with the data and
the theory of Lawrence and Gerber falls below the measured 11ft coeffi-
cients. The higher M values correspond to the higher l/k values.

The steady-state 11ift coefficients corrected for aspect ratio by the

A

A\Il-M2+2

as suggested in reference 8 for the compressible case evaluated for

M = 0.70 also are shown in figure 4. The value of the incompressible
approximation to the steady-state 1ift coefficient is a fair representa-
tion of the experimental values for l/k greater than 1.5. The experi-
mental values do not appear to vary appreciably from the value determined

factor for the incompressible case and by the factor

Thus, it might appear that the steady-state

by the correction .
A+ 2

1ift coefficient could be used as a basis for estimating the magnitude
of the 1ift coefficient over a considerable range of reduced frequency.
The inadequacy of estimating these coefficients with two-dimensional
incompressible-flow theory with no correction or modification is also
indicated in figure 5. This correction would appear to vary for this
case from 0.67 for a value of 1/k of 2.5 to 0.56 for a value of 1/k

of 6.0.
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The measured phase angle of the 1lift vector for spring A is compared
with theoretical phase angles in figure 5. The theories may be noted to
agree in general and the theory of Reissner is in good agreement with the
measured values, the theory of Lawrence and Gerber falls above the
measured values by a few degrees, and the two-dimensional-flow theory is
seen to fall below the measured values by a few degrees. The phase angle
as given by the aspect-ratio theories and as measured appears to
approximate a linear function of reduced frequency in the range of k
from 0.2 to 0.7. Since the frequency was essentially constant for a
given torsional spring, the low values of reduced frequency were obtained
at the higher values of Mach number. In general, the phase angle of the
1lift appears to be predicted by the aspect-ratio theories of references 2
and 3.

Although some of the moment coefficients have already been pre-
sented as magnitudes and phase angles (fig. 2), the components of the
measured moments are compared with the components of the theoretical
moments. It is felt that, since the measured values were determined as
components, it is appropriate to compare these values with theoretical
components. By referring to figure 6 it may be seen for the in-phase
moment coefficient that the aspect-ratic theories give values which are
in general agreement with the data. The two-dimensional-flow theory is
given for reference only. With regard to the values given by the aspect-
ratio theories, it is seen that there is little difference between them
although the theory of lLawrence and Gerber appears to agree a little
better with the measured values. One other comparison that may be made
is with the steady-state value of the moment coefficient, for which there

is no damping moment. The coefficients with the correction A and
A+ 2
including compressibility A are indicated in figure 6. It

a1 - M 42
appearg that the steady-state coefficient uncorrected for Mach number
but corrected for aspect ratio could be used as a basis for estimating
the magnitude of in-phase moment coefficlents over the range of 1/k
greater than 1.5.

The experimental damping-moment-component coefficients and the
theoretical damping-moment-component coefficients are shown in figure 7.
The two-dimensional-flow theory is given again for reference only and,
of course, needs large correction factors to make it apply to the data.
The scatter in the data in conjunction with the possible influence of
Mach number and of Reynolds number precludes exact conclusions with
respect to the agreement of the data with the theoretical coefficilents
of the aspect-ratio theories. Although each of the aspect-ratio theories
is to some extent in agreement with measured coefficients for the damping
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moment over some range of l/k, it may be noted that neither aspect-ratio
theory covers the overall range adequately.

The phase angle between the moment vector and the angular-position
vector was obtained from the ratio of the out-of-phase and in-phase
moment coefficients and is shown in figure 8. The scatter in the data
is attributed to the scatter present in the components of the moment
coefficients. It may be seen that the measured coefficients are in fair
agreement with the coefficients given by the aspect-ratio theory of
Reissner for l/k greater than 2, whereas the theory of Lawrence and
Gerber gives slightly lower values. In this instance, it appears that
the two-dimensional-flow theory predicts substantially the same values
as the aspect-ratio theories although it is slightly different in trend.

Before closing the discussion on the measured aerodynamic coeffi-
cients, it is appropriate to mention the possible influence of wind-
tunnel -wall effects on the measured quantities. An analytical investi-
gation (ref. 9) of the effects of wind-tunnel walls on air forces on a
two-dimensional oscillating wing at subsonic speed demonstrated the
possibility, under certain conditions, of the existence of large tunnel-
wall effects, associated with an acoustic resonance phenomenon. It was .
also pointed out that similar conditions exist for three-dimensional
flow. It was shown in this reference that a condition for a maximum of

1 - o B2

2al

the Mach number corresponding to the circular frequency of oscillation
and tunnel height H at which the phenomenon will occur. The symbol a

represents the speed of sound. At the present time, no quantitative cal-
culations for a finite wing are available.

distortion is satisfied by the equation M., = where M., 1is

For the purpose of showing the proximity of the data reported herein
to the region of critical tunnel-wall interference based on two-dimensional
flow, plots of k against M for the various torsion springs are shown
with a curve of critical tunnel-wall effects in figure 9. The curves
marked A, B, C, and D are well away from the curve of critical wall effects
and, thus, the tunnel-wall effects might be expected to be small. The
range of critical Mach number Mcr for the data given in this paper is

between 0.89 and 0.96, whereas the highest Mach number reported is 0.81.
The curve marked D' intersects the critical curve at a value of M = 0.47
or k = 0.77 and represents data from spring D in Freon-12. Some evidence
of the tunnel-wall effects based on the D' curve is shown in appendix C.
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CONCLUDING REMARKS

Some measurements of the oscillating aerodynamic forces and moments
acting on a rectangular wing of aspect ratio 2 oscillating about the mid-
chord were made at four different frequencies. The measurements were
made over a range of Mach number from 0.15 to 0.81, e range of Reynolds

number from 0.60 X lO6 to 9.21 X 106, and a range of reduced frequency
from 0.15 to l.32.

Appendixes are presented to show the correction of the root reaction
for inertia and aercelastic effects in order to determine the total aero-
dynamic load, to show the determination of the aerodynamic damping-moment
coefficient, and to show some experimental evidence of wind-tunnel-wall
effects on an oscillating wing.

A study of the effects of Mach number and Reynolds number indicated
that, in the range of the experiment, the overall effects appeared to be
small, although there were insufficient data even to determine qualita-
tively their trends. The phase angle between the 1ift vector and angular
position was seen to vary fairly linearly over the range of reduced-
frequency parameter studied. The in-phase 1ift and the in-phase moment
remained essentially constant with change in frequency parameter, whereas
the quadrature 1lift and quadrature moment were found to increase with an
increase in frequency parameter.

Comparisons of the data were made with existing published data and
with theoretical incompressible coefficients obtained from the aspect-
ratio theory of Reissner, the aspect-ratio theory of Lawrence and Gerber,
and the two-dimensional-flow theory. A comparison of the experimental
data of this paper with other experimental data showed that good agree-
ment was obtained for those coefficients that could be accurately deter-
mined. In the comparison of these data with the theoretical coefficients
it was found, as might be expected, that the two-dimensional-flow theory
was inadequate for predicting the experimental coefficients. However,
the coefficients given by the aspect-ratio theories were generally in
good agreement with the experimental data.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 17, 1953.
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APPENDIX A

CORRECTION OF ROOT REACTION FOR INERTTA AND AEROCELASTIC

EFFECTS TO DETERMINE THE TOTAL AERODYNAMIC LOAD

In the present experiment on a cantilever wing, knowledge is desired
of the total aerodynamic load which develops solely from the torsional
oscillations of the wing. This aerodynamic load is not equal precisely
to the reaction at the wing root because of the presence of secondary
bending reactions which come as a result of the freedom of the wing to
be excited slightly in a bending oscillation. A correction must, there-
fore, be applied to the measured root reaction to obtain the aerodynamic
load associated directly with the torsional motion. This appendix derives
and shows the magnitude of this correction. The derivation is made in
general terms of a wing of variable cross section; the correction is then
applied to the uniform wing.

On the basis of the engineering beam theory, the differential equa-
tion for bending of the wing is

2
(1 + 1) E 9—21 = (A1)
dx2 dx2

where g is the structural damping coefficient and p 1s the intensity
of the applied loading. When strip analysis approach is chosen, the
loading for the case under consideration may be written

. Tfp02 . a .
D= -my - — ¥ - 2 pev(F + iG)y + P (A2)

2

The first term in this expression is the inertia force associated with
the wing mass; the second and third terms refer, respectively, to the
"apparent air-mass" inertia effect and the aerodynamic damping associated
with bending oscillations; and the fourth term P refers to the tor-
sionally induced aerodynamic loading, which here is regarded as the
"spplied forcing function." The second and third terms were established
by using oscillating-flow theory for two-dimensional incompressible flow
as o guide; the lift-curve slope a and the F and G coefficients,
which are like the in-phase and out-of-phase Theodorsen flutter coeffi-
cients, are to be selected as appropriate to the case being treated.
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Since harmonic motion is involved, the loading and the deflection
may be written

P = L(x)eimt (A3a)

= ¥(x)elot (A3b)

e
|

Now, with the use of equations (A2) and (A3), equation (Al) reduces to

2 2 -
Qo+ i) mr &Y - WPy - 4 2 pevo(F + 1G)Y + L (Ak)
dx®  ax?
where
2
- fpe
m=m +
n

A convenient and fairly accurate approximate solution to this equation
can be obtained by expressing the deflection in terms of the fundamental
bending vibration mode of the wing, the choice here of only a single mode
expansion being considered adequate since the forcing frequencies used
in the experiments were below the fundamental wing frequency. Thus,

Y = ayy1 (A5)

where aj represents the response amplitude to be determined and y3
is given in terms of unit tip amplitude and satisfies the equation

— EI —= = w)“fy; (a6)

In accordance with the Galerkin procedure for solving differential equa-
tions, equation (A5) is substituted into equation (A4) which is then
multiplied by y; and integrated over the semispan of the wing. The
result, with the use of equation (A6), is
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m S
a1 (1 + igw2M; = ajefMy - iag 2 = o?(F + 1G)A; + fo Ly dx
(A7)

where

[s .
Ml = ledx
JO
S o
0 Cr.
2
me = ﬁp;r
x = &Lr
2v

and c, 1s some convenient reference chord, usually taken at about the
three-quarter-span station. The desired response amplitude can now be

determined directly from equation (A7); hence,

.8
J[ Lyl dx
a) = Q (A8)

(2 - of )My - % % mrAlq? + i(ga12Ml + % % mrAlaQ)

The loading on the beam is now written in terms of a;. Substitu-
tion of equations (A3) and (A5) into equation (a2) gives

- 2 .
p = ‘E%q?yl + “ﬁf ofy] - i % peva(F + iG);;\al + g}>elwt
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The root shear or reaction, which may be designated Voeiwt, may be

17

found by integrating this loading over the length of the beam; thus,

Voei(l)'t -

where

032 S
PNy - 1(F + 10) 2 X pla; + Jf L ax
1 1| 81
T k 0
S
Nl=fﬁwld)(
0
SC
0 Cr

eiwt

(A9)

Substitution of equation (A8) into equation (A9) and cancellation of the

harmonic terms gives

where

C, + iC,)d| S
v, = 1+§]_3L____if 1 ax
1t 1D2 0
1M "xk Mg
C2=—.8_'_F_mrBl
n k My
D U‘)lg 1 aGmI‘Al -
l=_—.— - e— a—
o tk M
le aFmAl
Dp=g——+=¢ L
s t k M
b/\s
Ly, dx
0 1
d =
-/

(M10)

(A11)




18 NACA TN 424

As stated earlier, knowledge is desired of the total aerodynamic
load that is associated with the torsional oscillations of the wing.
This total load is found directly from equation (A10) to be

s D; + 1D,
L dx = _ v,
0 C1d + Dy + 1(Cpd + D)

This equation, when expressed in the complex notation of a modulus and
a phase angle, becomes

. i s I
'S 2 D 2 1¢]_""_ l¢]_"—"'
j L ax < Dy + Dy . 180VO=Ke ,18ovo (112)
0 (cia + D)% + (Cod + Dp )2
where
1 C:Dn - ChDy}d
¢l‘%— - tan~t ( 1-2 2 l) 5 (AlB)
160 d(ClDl + Cng) + D12 + D2

This is the final equation sought. Thus, the magnitude of the torsionally
induced air load is found simply by multiplying K by the magnitude of
the measured root shear; the phase angle in radians between this load and

the root shear is given by ¢l' A word about the coefficients C,, D,

and d may now be in order. All terms in these coefficients which contain
the lift-curve slope a are related to the aerodynamic damping effects
associated with the bending oscillations. A comparison of the second term
with the first term in Do, for example, will indicate how strong the

aerodynamic damping is in relation to the structural damping. The non-
dimensional term d may be seen to depend on the distribution of the air
load L(x). For most practical cases, it is considered sufficient to
evaluate this factor on the basis that the air load has an elliptic
distribution.

Some simplification results when the aforementioned relations are
applied to the case treated herein, that is, to a uniform cantilever wing.
In this case, it is easily shown that
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s o -
Ml=mf yld_X:Ii—é
0
8
Ny = ﬁk/A yp d&x = 0.3915ms
0
° 2
A, = dx = =
1 fo J1 N
Bl = L/yyl dx = 0.59158
Hence,

Co

and, for an assumed elliptic

In order to determine the correction K and the phase angle

1

.

1
alo
by (o
1]

i
+
o
b} =t
|

loading,

d = 0.29
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(A1k)

(A1%a)

(A150)

1

for the four different spring combinations that were used in the tests,
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equations (A12) and (A13) were used together with equations (A15). The
structural damping coefficient used for the wing was g = 0.008. The
lift-curve slope was taken equal to the theoretical value of 2x multi- -

plied by the often used aspect-ratio correction and was thus

A
+ 2
taken as x since the wing is of aspect ratio 2. The F and G func-
tions were arbitrarily chosen as those for two-dimensional incompressible
flow. The results obtained for the four cases are shown in the following
table:

Structural damping | Both structural and
i nl; =0 ic dampi
gorélon 'w><C30_l only, a aerodynamic damping
pring )
K ¢, deg K @1, deg
A 31 0.98 0.012 0.98 0.06
B 43 .95 .030 .95 11
C 5l .91 . 060 .91 .19
D 62 .87 .09% .87 .30

In order to gain an insight as to how aerodynamic damping effects
compare with structural damping effects, the calculations were made for
two conditions: (1) with structural damping only and (2) with both
structural and aerodynamic damping included. The table shows the results
for these two conditions. No differences are noted in K for these two
conditions. However, K decreases from a value of 0.98 to a value of
0.87 as the forcing frequency increases; thereby a correction that
ranges from 2 to 13 percent is indicated. Although a difference in
phase angle is noted for the two damping conditions, the important thing
to note is that in all cases the phase angle is a negligible quantity.
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APPENDIX B
DETERMINATION OF THE AFRODYNAMIC DAMPING-MOMENT COEFFICIENT

In this appendix the method used in obtaining the aerodynamic
damping-moment coefficient from the power-off decaying oscillations of a
torsional spring-inertia system is given. By assuming a linear problem,
particularly with respect to the aerodynamic coefficients, and by using
the concept that the structural damping moment is in phase with the
angular velocity but proportional to the angular displacement, the
differential equation of motion of the system is given by

I8 + ks<l + igs)a = % pvzsczacml + 1n@) (B1)

or

a,-*-.(j_j.__:.l'_:ga,:O
A

where A, B, and C denote coefficients. By definition,

kg - % pVESCZml )
= - =

“ﬁz

=1

S

and

T w2e2
_ ksgs - 5 pvee smo 5
kg - g pv2c2sml

Qi
|

Equation (Bl) has a solution of the following form (see, for instance,
page 86 of ref. 10):

N me\J CEC—A-E\]( 1+x2)1/ 2-1+1\I (1428) 1/ 2+:Jt

(B2)




22 NACA TN 4240

For small values of A, equation (B2) becomes
| 2
T AR P wpt- D +1
2 L 2
a = Imle ~ |a|e

For the logarithmic decrement, equation (B3) at t = 0 becomes

lofo = ||

and, after n cycles, at t = 2ﬂn/ad,

or

(B3)

(B4)

which is measured with the wing subjected to air flow. From the defini-

tion of A,

s 2
kg - 5 pvgc smp

&t =

1t 2
kg - 5 pvzc smy

(B5)
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Since
»
kg - % pvzczsml = Ismle
and
2
kg = IgWyge
then
I m12 a 2
Mo = I_r.._s__.____ gt - _)_:_a_c_ 8s (B6)
> pvgcas l

Equation (B6) is the form used in the reduction of the damping-moment
- data in this paper.
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APPENDIX C

SOME EXPERIMENTAL EVIDENCE OF WIND-TUNNEL-WALL EFFECTS

ON AN OSCILLATING WING

This appendix is presented to document data relating to some wind-
tunnel-wall effects on oscillating air forces and moments. The problem
of the effect of the presence of wind-tunnel walls on measurements per-
taining to airfoils and wings in the steady-state case has been resolved.
The problem for the condition of unsteady flow has been treated theo-
retically by Reissner in reference 11, Jones in reference 12, and Timman
in reference 13 for the incompressible case, and by Runyan and Watkins
in reference 9 for the two-dimensional subsonic compressible case. TFor
the incompressible-flow condition, the influence of the tunnel walls has
been found to be comparatively small for most cases, although indications
are given that, for some ranges of 2v/cw, the effect may be very large.
Tor the compressible-flow case, reference 14 indicates the possibility
of obtaining a resonant condition which might result in a misinterpre- »
tation of the measured quantities, the critical condition for the rec-

tangular tunnel being given by af/a = (2m - 1) dl - M2 where m = 1, .
2, and 3.

Reference 9 indicates that this resonant condition corresponds to
the establishment of transverse velocities having a maximum amplitude
at the airfoil. These transverse velocity components alter the effec-
tive angle of attack and thus affect the air forces. Such a condition
might be expected to be obtained for the finite wing, although the
behavior of the measured forces and moments in approaching the vicinity
of the "eritical" condition may not necessarily follow the pattern of
the two-dimensional wing.

An indication that a distortion and a resonance is experienced by
oscillating wings has been obtained experimentally. These data are pre-
sented in table VIII and figures 10 and 11. It might be remarked that
the phenomena have also been observed for the two-dimensional wing in
connection with the work of reference 5. The peculiar behavior of the
data in the neighborhood of the Mach number which is critical for the
resonance condition is strikingly demonstrated by the damping-moment
coefficients. (See Tig. 10.) For the finite wing, these data tend to
yield peak values of the damping-moment coefficients in- the vicinity of
the "critical Mach number." It is of interest to note that this behavior
is the inverse to that observed for the data of the infinite wing of ref -
erence 13. This inversion may be attributed to the introduction of three-

dimensional effects into the problem. .
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Figure 11 indicates effects of wall interference on the oscillating
1ift coefficients. As the critical value of l/k is reached, the 1ift
coefficient drops off and there is a definite dip in the curve.

These data have been presented to furnish some evidence of the
nature of the effects of tunnel walls on the aerodynamic forces and
moments acting on an oscillating wing. It is evident that some caution
is required to avoid conditions leading to these effects.
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TABLE V.- THEORETICAIL. INCOMPRESSIBLE COEFFICIENTS OF

REISSNER APPLTED AT ASPECT RATIO 2

|1
k 1/k
/ ¢ prene | 11 12 8 my mp
0.15| 6.67 | 8.08 | 0.9412 0.9320 | 0.1315 | -10.25 | 0.4684 | -0.0848
.20 | 5.00 |11.01 .9519 Lo3ulh | ,1819| -9.15 | .h7ok | -.0759
.25 | k.00 | 14.50 .9550 Jo2Lh | L2%06 | -15.28 | 4736 | -.1296
Lo | 2.50 [24.20 | 1.0106 L9288 | .3984 | -21.80 | .504k4 | -.2020
60| 1.67|33.90 | 1.1480 L9530 | 6400 [ -26.00 [ .56k | -.2752
.80 | 1.25 [4k.70 | 1.3%050 L9272 L9184 | -28.70 | .6232 | -.34k12
1.00 | 1.00 |52.50 | 1.5706 L9564 | 1.2456 | -27.30 | .7292 | -.3768
TABLE VI.- THEORETICAL INCOMPRESSIBLE COEFFICIENTS OF
TAWRENCE AND GERBER FOR ASPECT RATIO 2 ’
L] M
k 1 0
S VA I ey | R A T ortac?le]| ™ | ™2
0.125(8.0| 8.9 0.787 o.777}0.121| -5.0f 0.455 0.453|-0.039%4
.25 4.0 8.2 .802 .76k | .250| -9.3 As57 L5211 -.0737
.5 |2.035.3 .910 .43l .526(-15.9 478 .560] -.131
1.0 |1.opp%.6) 1.12%3% | .718|1.10 |-2k.1 .58% .53%21 -.238
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TABLE VII.- TWO-DIMENSIONAL INCOMPRESSIBLE COEFFICIENTS OF THEODORSEN

x |1k | ¢ |z 11 15 o | m | m
tpvesc |a|

0.20{ 5.00 | -1.21 1.493 1.490 | -0.0317| -16.0 {0.752 | -0.2158
.30 3.33 | 5.82 1.390 1.384 Ak | -18.0f .703 | -.2258
Lol 2.50 |13.66 1.354 1.316 .320 | -19.5 | .678 | -.2400
.50 2.00 | 21.35 1.365 1.271 Lo7 | =20.7 | .667 | -.2512
60| 1.67 | 28.40 1.410 1.240 bT72 | -21.8 | .665 | -.2641
.80} 1.25 | 40.05 1.570 1.201] 1.010 | -23.4 | .681 | -.2948

1.00| 1.00 |48.60 1.784 1.1279 | 1.339 | -2k.9| .715 | -.3306

1.20} .83 |54.95 2.029 1.165| 1.661 | -25.9{ .763 | -.3697
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TABLE VIII.- EXPERIMENTAL DATA SHOWING EFFECT OF WIND-TUNNEL-WALL

INTERFERENCE FOR TORSIONAL SPRING D' IN FREON v
o v | M k |1/ | o R -—-%;iL-—- mo
tpvese|a

6,155 x 10-6|358/0.668 |0.514{1.94 |0.01833|7.65 x 106| 0.9k |-0.251
6,194 %511 654 | .52711.90( .01956|7.55 .9%2 - 17k
6,275 335| 624 | .552(|1.81| .02230|7.30 .813 -.104
6,350 1323 601} .584|1.71] .02175(7.10 .T49 -.0%
6,456 30k | .566| .62111.61] .01915(6.81 .782 -.24h
6,507 206| .552| .630{1.59| .01847{6.69 914 -.359
6,536 2921 .43 | .649[1.54 | .0175116.63 1.013 -.436
6,581 2821 .52L4 | .664|1.51 01751 (6.44 1.152 -.483
6,644 270} .503| .694|1.44| .01943(6.23 1.354 -.408
6,695 2621 487 .712|1.40| .02020|6.09 1.284 -.379 : -
6,728 254 | L4722 .731|1.37| .02120(5.93 1.350 -.291
6,810 o239 43| L7k |1.29] .02257(5.65 1.182 -.272 -
6,839 231| .429| .818[1.22| .02408]5.49 1.347 -.272
6,885 221 .410( .856|1.17| .02503|5.28 1.429 -.283
6,927 212 .395| .879{1.14 | .0254k |5.10 1.%07 -.262
6,963 203| .378| .93k |1.07| 02654 |k.01 1.446 | -.279
7,005 192 .357| .996(|1.00| .026884.67 1.458 -.260
7,071 176 .32711.065| 94| .02750 (4. 32 1.579 -.276
7,124 160} .298 1.172| .85| .02900|3.96 1.69% -.283
7,186 w3) 267 [1.317] .76} .02900]3.57 1.893 -.292
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Figure 2.- Comparison of the variation of experimental aerodynamic
coefficients with k of this report with the variation given in
reference 6. TFor reference 6 data, M = 0.13 and

0.7 x 106 < R < 0.88 x 10°.
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